
MOVING FROM CLOUD CHAOS TO STANDARDS

University of California, Office of the President
• Khalid Ahmadzai, Sr. Cloud Engineer
• Matt Stout, Cloud Architect
• Kari Robertson, Executive Director of Infrastructure Services

[2]

University of California:
• 10 Campuses - undergraduate/graduate
• 6 Academic Health Centers
• 3 National Laboratories
• >230,000 employees
• >280,000 students

University of California, Office of the President (UCOP):
• Systemwide infrastructure services
• Local infrastructure services
• >2000 employees
• >$2M annual cloud provider utility
• > 50 cloud accounts

ABOUT US

Khalid Ahmadzai
Sr. Cloud Engineer

Matt Stout
Cloud Architect

Kari Robertson
Executive Director of
Infrastructure Services

[3]

CLOUD JOURNEY TO DATE
< 2019 2020 2021 2022

Cloud Exploration

• Training for all
• Freeform builds

Assessment

• Established FinOps
• Analyzed Existing

Workloads
• Easy Optimizations

Migrations:
• UC Systemwide Payroll

System

Foundations

• Cloud Standards
• Automated Compliance
• Security Framework

Migrations:
• Data Center

(secondary)

Scaling

• Central IT Alignment
• Retrofits
• Intermediate

Optimizations

Migrations:
• UC Systemwide Student

Application System
• Mainframe Workloads
• ECS Cluster Containers

CLOUD CHAOS

[5]

• Strategy to exit data centers and move to cloud
• Formal training for a majority of IT staff
• Exploration is encouraged
• Grow cloud skills through hands-on experience within teams
• Organic growth, minimal boundaries

CLOUD CHAOS | WHERE WE STARTED

[6]

• Undefined security framework
• Roles and responsibilities varied by team
• Expertise expected on all cloud services
• Coke vs. Pepsi moments
• Self-managed FinOps
• Keeping up with new cloud offerings
• No coding/deployment standards

How do you scale without standards?

CLOUD CHAOS | CHALLENGES

[7]

• Establish cloud standards
• Define roles and responsibilities
• Develop deep expertise
• Automate everything
• Ask for help
• Align existing cloud workloads
• Create documentation and share widely
• Don’t reinvent the wheel
• Look at best practices

Scale! Scale! Scale!

CLOUD CHAOS | IMPROVED STRATEGY

CLOUD STANDARDS

[9]

• Identify current challenges
• Monthly meeting to review

– Security/Risk Analysis
– FinOps
– Future Plans (Infrastructure and Business)

• Alignment matrix – vetted and approved
• Tools

– Terraform: Infrastructure as code
– Cloud Custodian: Compliance
– Many AWS native services

CLOUD STANDARDS | IMPLEMENTATION

[10]

• Account Structure
• Account Owner Responsibilities
• Account Creation Process delivered with base offerings
• Backups into dedicated separate account
• Disaster Recovery into designated regions
• Email Management
• FinOps - cost management/analysis
• IAM Policies
• Logging to S3 -> SIEM
• Networking
• Security framework monitored by SecOps
• Tagging for both functional and technical reasons
…..….the list keeps growing

CLOUD STANDARDS | EXAMPLES

TERRAFORM

[12]

• What is it?
– https://www.terraform.io/
– Infrastructure as Code
– Terraform codifies cloud APIs into declarative configuration files

• What problem did it fix for us?
– Repeatable deployment of resources consistently across many accounts
– Standards made easy

• Once coded, infrastructure is the easier to deploy
• Differences and missed standards are reduced

TERRAFORM | OVERVIEW

https://www.terraform.io/

[13]

Why did we choose Terraform over other tools?
– To leverage existing knowledge and public examples, modules, and code
– Existing expertise in house
– Multi-cloud
– Cloud providers do have many of their own tools for this

• Vendors have solutions worth considering; AWS CDK, AWS Quick Start Cloudformation code
• So there are choices, for us it was Terraform due to our existing code and expertise

The key is to have something like Terraform and
use it, standardize on it, and grow it

TERRAFORM | OVERVIEW

[14]

How do we use it?
– Deploy all our resources for networking, compute, storage, security, and more
– We use it at the start of all new deployments
– Modules

• Reduce the amount of code for each implementation through code reuse
• Standards are easier, less new code each use

– Backend
• Use a centralized backend such as Scalr, Terraform Cloud, Cloudify, S3
• These backends control locking, state files, including other features for logging, security and

central deployments

TERRAFORM | OVERVIEW

[15]

• How did we get people to learn Terraform?
– Build it and they will come
– Training resources: https://developer.hashicorp.com/terraform/tutorials (or there are

paid trainings and low cost options through udemy, acloudguru)
– Terraform Registry - a great place to find modules as a starting point

• Is there a review process?
– Our cloud team schedules code reviews to share knowledge, look for issues, and

catch redundancies

TERRAFORM | CARE AND FEEDING

https://developer.hashicorp.com/terraform/tutorials

[16]

locals {
application = "UCOP Winning Lottery Generator"
createdBy = "terraform"
environment = "prod"
group = "cs"
source = join("/", ["https://github.com/acme/ucop-terraform-deployments/terraform/UCOPWLG"])

}
module "vpc" {
source = "git::https://git@github.com/acme/terraform-modules.git//modules/aws/standard-its-vpc//?ref=v0.0.13"
application = "UCOPWLG"
azs = ["us-west-2a", "us-west-2b"]
cidr_block = "10.0.0.0/22"
enabled = "true"
environment = local.environment
enabled_data_subnets = "true" # change to true to create data_subnet
enabled_nat_gateway = "true" # change to true to create nat-gatway
name = join("-", [local.application, local.environment])
tags = {
"ucop:application" = local.application
"ucop:createdBy" = local.createdBy
"ucop:environment" = local.environment
"ucop:group" = local.group
"ucop:source" = local.source

}
}

TERRAFORM | EXAMPLE CODE

https://github.com/ucopacme/ucop-terraform-deployments/terraform/UCOPWLG
mailto:git::https://git@github.com/ucopacme/terraform-modules.git//modules/aws/standard-its-vpc//?ref=v0.0.13

[17]

TERRAFORM | DEMONSTRATION

CLOUD CUSTODIAN

[19]

• What is it?
– Cloud Custodian is an open source, stateless rules engine for cloud environments enabling

management of resources by filtering, tagging, and then taking action

• What problem did it fix for us?
– Cost management and orphaned resource cleanup
– Security enforcement, encryption, compliance, tagging
– Ensure certain standards are used across all AWS accounts
– Replace ad-hoc cloud-specific scripts with simpler syntax
– Very easy to write policies that look for issues
– Automatically generate tickets in our ticketing system (ServiceNow)

CLOUD CUSTODIAN | OVERVIEW

https://cloudcustodian.io/docs/index.html

[20]

• Why did we choose Cloud Custodian over other tools?
– Open source tool
– Easy to write policies specific to your requirements
– Continuous deployment of polices to multiple AWS accounts

• Policy review and deployment process:
– Development/testing of new policy
– Vetting by cloud team
– Announcement and document
– Deploy to production (re-evaluate as needed)

CLOUD CUSTODIAN | OVERVIEW

[21]

How do we use it?

– Inform -> ServiceNow -> Owner Takes Action
• Example: Missing tags

– Warn -> ServiceNow -> Cloud Custodian Takes Action (14 days)
• Example: Orphaned volumes

– Cloud Custodian Takes Action (Immediate)
• Example: Missing encryption

CLOUD CUSTODIAN | IN ACTION

[22]

• Ensure organization cloud standards are followed
• Enforce security (ex. access, authorization, encryption, logging)
• Detect/notify root login – unauthorized user detection
• Notify and purge orphaned/abandoned resources
• Alerts owner of missing tags used for compliance and cost management
• Scheduled system availability - turn off non-production

environments nights/weekends

CLOUD CUSTODIAN | POLICY REPOSITORY

[23]

CLOUD CUSTODIAN | SAMPLE POLICY

REFLECTIONS

[25]

• Acknowledge reality of current state
• Establish cloud standards to scale efficiently
• Security framework is only as strong as your compliance
• Cost management can identify technical mistakes
• Cloud strategy needs an execution plan
• Communication is key to cloud standard adoption
• Notification + Action must be used carefully
• Advertise accomplishments, highlighting the 'what' and 'why'

LESSONS LEARNED

[26]

• Improved compliance and consistency
• Cost optimization
• Increased capacity enables teams to do more with less (ex. account creation)
• Enabling developers to develop (vs. manage infrastructure)
• Granular FinOps – visibility into actual costs of services
• Terraform modules – reusable code/configuration

BIGGEST WINS

[27]

• Implement more policies
• Increase number of policies that notify then take action
• Improve IAM roles to align access with responsibilities
• Retrofit existing workloads to match cloud standards
• More marketing of our accomplishments!

WHAT'S NEXT

QUESTIONS

Khalid.Ahmadzai@ucop.edu
Matt.Stout@ucop.edu

Kari.Robertson@ucop.edu

mailto:Khalid.Ahmadzai@ucop.edu
mailto:Matt.Stout@ucop.edu
mailto:Kari.Robertson@ucop.edu

	Slide Number 1
	ABOUT US
	CLOUD JOURNEY TO DATE
	Slide Number 4
	CLOUD CHAOS | WHERE WE STARTED
	CLOUD CHAOS | CHALLENGES
	CLOUD CHAOS | IMPROVED STRATEGY
	Slide Number 8
	CLOUD STANDARDS | IMPLEMENTATION
	CLOUD STANDARDS | EXAMPLES
	Slide Number 11
	TERRAFORM | OVERVIEW
	TERRAFORM | OVERVIEW
	TERRAFORM | OVERVIEW
	TERRAFORM | CARE AND FEEDING
	TERRAFORM | EXAMPLE CODE
	TERRAFORM | DEMONSTRATION
	Slide Number 18
	CLOUD CUSTODIAN | OVERVIEW
	CLOUD CUSTODIAN | OVERVIEW
	CLOUD CUSTODIAN | IN ACTION
	CLOUD CUSTODIAN | POLICY REPOSITORY
	CLOUD CUSTODIAN | SAMPLE POLICY
	Slide Number 24
	LESSONS LEARNED
	BIGGEST WINS
	WHAT'S NEXT
	Slide Number 28

