
Developing for the
Cloud, in the Cloud
Michael B. Klein (he/him/his)
Software Development Tech Lead

Repository & Digital Curation
Northwestern University Libraries

Internet2 Technology Exchange 2022
December 8, 2022 / Denver, Colorado

About Me

Photo: Joshsukoff - Own work, CC BY-SA 4.0
https://commons.wikimedia.org/w/index.php?curid=124363357

I work here.

About the Team

Our (Current) Projects

Name Description Platform Audience Deployed Via

Arch Institutional Repository Ruby on Rails Public Docker

AVR Audiovisual Repository Ruby on Rails Faculty/Students Docker

Meadow Repository Asset
Management

Elixir/Phoenix
React

Library Staff Docker

Digital
Collections

Digital Collections
Discovery & Access
Website

Next.js/React Public Hosted Single-
Page App

DC API Digital Collections
Discovery & Access API

NodeJS Public AWS Serverless

IIIF Image Server NodeJS Public AWS Serverless

Partnerships & Community Involvement

Samvera Community
- Open source repository framework
- 30 partners / dozens of users
- Underpinnings of both AVR & Arch
- Full projects & components
- Committers, contributors, and

product owners from our team

IIIF Consortium
- International Image Interoperability

Framework
- Open standards for delivery of

digital objects at scale
- NUL’s IIIF projects:
- Serverless IIIF service
- IIIF-compatible front-end

components

Application Infrastructure
Meadow
1 PostgreSQL Database
5 OpenSearch Indexes
11 Lambda Functions
6 S3 Buckets
13 SQS Queues
1 MediaConvert Pipeline
1 A/V Streaming Server
1 IIIF Service
1 LDAP Server
S3 Object Triggers
EventBridge Rules

AVR
1 PostgreSQL Database
1 Fedora Repository
1 Zookeeper Config
1 Solr Index
4 S3 Buckets
18 SQS Queues
1 Redis Cache
1 MediaConvert Pipeline
1 A/V Streaming Server
• spacer
• spacer
• spacer

Arch
1 PostgreSQL Database
1 Fedora Repository
1 Zookeeper Config
1 Solr Index
3 S3 Buckets
3 SQS Queues
1 Redis Cache
S3 Object Triggers
spacer
• spacer
• spacer
• spacer

Guiding Principles

- Configuration over customization
- Let developers be developers
- Ease of onboarding
- Stop racing against the depreciation of our laptops

Our Toolchain

Elixir 1.14 /
OTP 25.1

NodeJS 16.x
and 14.x Ruby 2.7 Python 2.7

and 3.10

Git / GitHub
npm • yarn

bundler
hex • poetry

Terraform Docker
Engine

AWS CLI AWS SAM
CLI

AWS ADFS
Login MkDocs

Terraform

- Infrastructure as code

- Configuration: Human readable, declarative resource
definitions

- Plan: What needs to be created/changed/destroyed

- Apply: Make the changes dictated by the plan

- State: A record of how things were the last time we checked
- Workspace: A single named instance of state data

Iteration 1: docker-compose
Goal: make local development possible

- Individual docker-compose.yml for every project

- Official images:
- PostgreSQL, Redis, Elasticsearch/OpenSearch, Solrcloud

- Third party images:
- minio (S3), go-aws (SQS)

- Bespoke/customized images:
- Fedora Repository, IIIF, Media Streaming, LDAP

Iteration 2: devstack v1
Goal: make (most) developers’ lives easier

- Custom wrapper for docker compose (~250 LOC)

- Shared docker-compose.yml
- Handled complicated orchestration of 13 different services
- Independent dev/test environments

- Data persistence, but easy to tear down/start from scratch

Iteration 3: devstack v2
Goal: more AWS service emulation

- Replaced minio & go-aws with localstack

- Configuration now includes custom Terraform manifests

- Lambda functions
- HTTP and REST APIs via API Gateway

- Looking ahead: Step Functions, EventBridge Rules

https://localstack.cloud/

Unresolved Issues

- Complex runtime
requirements

- Increasingly difficult to
replicate/emulate on a
workstation or laptop

- Architecture decisions
constrained by development
resources

- Need to develop and test
with larger fixtures and data

Iteration 4: devstack as a service
Goal: compatibility & convenience

- Hosted on an AWS EC2 instance
- Uses a combination of shared and individual

resources
- Uses actual cloud services instead of mocks

and emulators
- Gets beyond laptop resource limits
- Persistent at the developer level
- Supports individual user preferences
- Easy to maintain
- Simple to replace

Developer EC2 Instance

DEV_PREFIX=bob
DEV_ENV=dev

bob-dev-ingest
bob-dev-preservation
...

bob-dev-ingest-file-set
bob-dev-initialize-dispatch
bob-dev-extract-mime-type
bob-dev-copy-file-to-preservation
...

bob-dev-meadow

Technical Details
AWS Virtual Private Cloud 10.0.0.0/8

Public subnet
10.0.0.0/16

Private subnet
10.1.0.0/16

Developer EC2
Instance

OpenSearch
Cluster

Aurora Serverless
PostgreSQL instance

LDAP Container

Internet

Developer Laptop

AWS Cloud

- Shared Resources

- Individual Resources

- Configuration

- User Scripts & Utilities

- Automated Setup,
Teardown &
Replacement

VS Code
Server

SSH over
SSM Session

VS Code
Remote-SSH

Extension

• Local dependencies
• Command line tools

managed by asdf-vm
• Docker Engine

One-Time Setup

$ cd common
$ terraform init
$ terraform apply

Total build time: ~15 minutes

- Virtual Private Cloud

- Database cluster

- OpenSearch cluster

- DNS zone

- IIIF server

- Shared Lambda functions

- LDAP server

- Shared access policies, roles,
and environment configuration

New Developer Setup

$ cd individual
$ terraform init
$ terraform workspace select bob
$ terraform apply

Total build time: ~5 minutes
Time until init script completes:
~20 minutes

- Developer VM

- S3 Buckets x2

- SQS Queues x2
- Policies & roles

- Initial system config

Maintenance & Support

Maintenance & Support

Secret Sauce I: Automated Startup

Found?

Error

Running?

Start SSM session

Hand session back
to SSH client

Launch

Running?

Timeout?

Wait

Get hostname prefix:

��
��

Find EC2 instance tagged with
��
	��������������
������

��������
��

�
��������
�����
��������������

Yes

Yes

Yes

Yes

No

No

Run SSH server
on host

$ ssh bob.dev.nulrdc.northwestern.edu

~/.ssh/config
Host *.dev.nulrdc.northwestern.edu
User ec2-user
ForwardAgent yes
ProxyCommand sh -c "~/.ssh/nul-ssm-proxy.sh %h %p”

Works regardless of how the SSH connection is initiated:
- Terminal Session: ssh, scp, rsync, or sftp
- VS Code Remote-SSH Extension
- Database Client Proxied Connection Configuration

Typical cold start time: 45 seconds

Secret Sauce II: Automated Shutdown

- Definition of “idle”
- No “keep-alive conditions”

- Definition of “keep-alive condition”
- Active VS Code Server
- Active tmux session
- ~/.keep-alive file

Wait
1 minute

Idle?

Shutdown
Scheduled?

Shutdown
Scheduled?

Schedule
Shutdown:
30 minutes

Cancel
Scheduled
Shutdown Do Nothing

Yes

Yes

No

No

No

Yes

Secret Sauce III: App Configuration

- Instance tag (bob) and app environment (dev/test)

- direnv / .envrc
- AWS Secrets Manager

- Some apps built to use secrets directly
- Others require helper scripts to populate the environment

https://direnv.net/

Secret Sauce IV: Addressing

- On startup: Register dynamic IP address as
bob.dev.nulrdc.northwestern.edu

- Temporarily open specific firewall ports with
$ sg open CIDR PORT

- Dynamic web proxying with
$ https-proxy REMOTE_PORT LOCAL_PORT

How did we do it?

April 2022

First pass: AWS Cloud9 IDE
- Complicated bootstrapping script + Terraform
- Provided the bones of the automated startup and shutdown scripts
- Limited options for OS, volume size, other EC2 instance features

September 2022

Second pass: Fully Custom
- Terraform provisioning of all shared and individual resources
- EC2 “first boot” script installs all dependencies and tools
- Startup and shutdown scripts tailored to our specific needs
- Can start with any base image (currently using Fedora 36)

Backup & Restore: Backup

- Save list of installed asdf plugins & versions

- Save list of installed VS Code extensions

- Write VS Code version & build info

- Copy VS Code settings.json
- Create tarball of all symbolic links under $HOME
- Tar up $HOME to /tmp excluding symlinks, asdf, VS Code, caches,

build artifacts, installed packages, other ephemeral files

- Copy tarball to shared S3 bucket

Backup & Restore: Restore

- Download user’s tarball from shared S3 bucket

- Extract backup into $HOME
- Reinstall correct build of VS Code using saved manifest

- Reinstall VS Code extensions using saved list

- Copy VS Code settings.json back into place

- Reinstall asdf plugins & tools using saved manifest

- Extract symlinks.tar.bz2 into $HOME

Additional Features

- Aurora Serverless database spins up and down in response
to demand — no charges while idle

- Owner’s public SSH keys installed from GitHub profile
- SSH key forwarding

- Scripts & tools are updated via git pull on every launch

- Environment configuration via AWS Secrets Manager

Caveats & Quirks

- No cure yet for “Developer forgets to shut down VS Code on Friday afternoon”
- No focus on security / privacy between developers
- SSH Agent purges keys after two hours

- Can’t reconnect mid-shutdown
- VS Code sometimes fails to connect on the first try
- VS Code SSH-Remote plugin is proprietary
- OpenSearch Cluster doesn’t auto-scale, and is slow to start up and shut down,

so its 7½¢/hr. is a constant, 24x7 cost

- Some AWS features come with unanticipated costs
- Most are predictable, but VPC configuration can surprise you!

But what does this all cost?

 $-

 $50.00

 $100.00

 $150.00

 $200.00

 $250.00

May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022

Dev Environment Costs per Month by Service

EC2 Instances OpenSearch Aurora Serverless PostgreSQL S3

Step Functions SQS Route 53 Container Registry

Lambda Secrets Manager CloudFront API Gateway

CloudWatch Elastic Container Service SNS

But what does this all cost?

 $-

 $20.00

 $40.00

 $60.00

 $80.00

 $100.00

 $120.00

May 2022 June 2022 July 2022 August 2022 September 2022 October 2022 November 2022

Dev Environment Costs per Month by Owner

shared dev dev mbk dev dev

Still to Come

- Better code organization

- Modular, reusable Terraform

- Improved maintenance utilities
- Better reporting tools

- Individual uptime alerts

Code & Contact

https://github.com/nulib/aws-developer-environment

Michael B. Klein (he/him/his)
Email: michael.klein@northwestern.edu

GitHub: https://github.com/mbklein

https://github.com/nulib/aws-developer-environment
mailto:michael.klein@northwestern.edu
https://github.com/mbklein

