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Overview

• Motivation
– Science workflows and data requirements

• Example 1: Emerging lightsource workflows
• Example 2: CMS workflows

– Large Science Data transfer challenges/anomalies
– Existing solutions
– Why existing solutions are insufficient

• Background (data sources)
– High-touch
– Q factor

• Our Solution
– Using in-network telemetry data for real-time network monitoring 

• High-performance data transfer
• Network security
• Network planning

– High-Touch: precision network telemetry services
– Early results

• Future work
• Summary
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Big data science workflows and data requirements

The LHC Accelerator Complex
DOE BES Structural Biology Resources

Today…
● Science instruments  generate vast amounts of 

data 
● Data must be collected, stored and analyzed in 

a distributed manner
● Emerging class of workflows requires fast result 

turnaround 
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Emerging workflow: fast result turnaround for experiment 
calibration

Lightsource 
workflow class:
● 15TB/day data
● Near-real time 

result 
turnaround 
required 

● Experiment 
reconfiguration 
based on 
results
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Monitoring data transfers is a challenging task 

Questions:
● What to collect?
● When and where?
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Data transfers experience  performance degradation 
challenges 

Packet retransmissions
Throughput degradation
Long completion times 

Solutions in 
Real-time or 
near real-time
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Data transfers experience security events at different 
levels

Probing
Malicious traffic
Data exfiltration attempts

Solutions in 
Real-time or 
near real-time
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Anomaly detection and performance prediction is 
critical for seamless data movement

Predict usage patterns
Identify flows that need re-engineering
Dynamically configure network paths
Detect malicious activity

Solutions in 
Real-time or 
near real-time
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Existing anomaly detection solutions perform poorly on 
scientific network traffic

• High variability of data transfers
• Multi-dimensional feature dependencies
• Limited visibility

– Sampled data (SNMP)
• Per interface
• Aggregate

– End-host data (tstat)
• Statistics summary

– Flow-based (sFlow, Netflow)
• approximate

• Offline solutions
– Post mortem analysis
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High variability: data transfer performance depends both on 
network conditions and end-host system performance

We need to investigate both end 
hosts (system, CPU, counters)
 and network state (packets, flows)
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Data transfer variability: flow retransmissions increase 
during busy time windows

Number of active incoming 
transfers over 24h period on a  
DTN

Percentage of 
retransmissions for incoming 
transfers over 24h period on a  
DTN

Retransmissions spike 
and then even out 
suggests of NIC load 
balancing (still under 
investigation) 



BERKELEY LAB

 Data transfer variability: small flows experience larger 
retransmission percentages

Incoming flow sizes on a DTN Outgoing flow sizes on a DTN

Larger flows are more stable (retransmission <0.2%)
Do  we care about small flows?
Yes! For DTNs  that users can choose approx. 90% of transfers are below 100GB 



BERKELEY LAB

Data transfer performance depends both on network 
conditions and end-host system performance

What is happening in the network?
● Performance degradation events?
● Security incidents?

When is it happening?
Why?
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Data sources: ESnet6 
High-Touch and Q-Factor
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ESnet6 High-Touch: architecture and design

15

Router

HT Servers

FPGA (Xilinx Alveo 
U280)
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ESnet6 High-Touch: platform and deployment plan
42 deployment locations, each location will have 2 High-Touch servers

High-Touch Server (x2)

Compute node

Xilinx Alevo U280 FPGA: 
● 2x100G port
● 1.2M logic cells
● 32GB DDR4
● 8GB HBM2 memory (3.2 Tbps I/O) 

16
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ESnet6 High-Touch: architecture and design (life of a 
packet)

17
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Q-Factor for host-based INT and tunning

18

• Q-Factor will extend the hosts’ capabilities by:
– Adding support for INT to hosts
– Supporting a Telemetry Agent to tune the 

host

• INT at hosts will operate via two approaches:
– If a programmable NIC is available, INT will 

be done at the NIC
– Otherwise, eBPF/XDP/TC will be used 

before the Linux TCP/IP stack for 
performance

• Hosts’ applications will NOT need to be 
changed:

– Q-Factor will operate before the Linux 
TCP/IP stack

– Completely hidden from the upper layers

TNC22|| June 16th, 2022 || Q-Factor: Enabling host tuning using In-band Network Telemetry
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Solution: detecting network anomalies using high 
precision telemetry data and machine learning

ML model
(RNN, 
LSTM, …)

Classification

Normal

Anomalies

High 
precision 
telemetry

Why use high precision telemetry:
Unprecedented visibility 
● Flow level
● Packet level

Near real time network microscope enables fast traffic reengineering
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Detecting network anomalies using high precision 
telemetry data and machine learning

High-Touch 
Data

Data 
Preprocessing 

Feature 
Extraction 
per flow

Model 
Training

Evaluation
Unseen 
data

Per flow, 
summary, per 
packet

Processed 
records

Train/Test
Split

Recalibrate

Prediction

Q-Factor 
Data Per s

witch

Lightweight 
anomaly 
detection

Heavyweight
diagnosis

WHY WHAT

WHEN

Analytics
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Data preprocessing and analytics using high-touch data
Data Preprocessing:
● Flow grouping based on 5 

tuple  (sIP, 
dIP,sp,dp,proto)

● Incoming/outgoing traffic 
filtering

● Additional field 
computation:
○ Duration
○ Rate, etc

● Time window binning 

Analytics:
● Discover subnets of interest:

○ Volume
○ Duration
○ Rate
○ Number of connections

● Discover time windows of 
interest:
○ Busy 

● Specific flow filters:
○ Single packet

● Subnet/org correlation
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TCP dominant (95% of 
overall traffic)

Data analytics example: longest and heaviest flows 
originate from hosts in a particular subnet 

Subnet 1

Subnet 1

4-day dataset from high-touch instance monitoring NERSC border router
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What do we want to predict and why?
Feature Extraction 
per flow:
● Start time
● Duration
● Size
● Rate
● …

Model Training:
● Plug and play
● SVR
● LSTM
● Timeseries models

Evaluation
Unseen 
data

Processed 
Records from
flows in 
Subnet 1

Recalibrate
Prediction

What is 
normal?
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Early results: flow size and duration prediction accuracy 

Training subnet specific SVR models for predicting flow duration and flow size yields  improved 
accuracy ()

 Flow duration prediction in 4 day 
window of NERSC traffic

 Flow size prediction in 4 day window 
of NERSC traffic
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Detecting network anomalies based on deviation from 
“normal”

Model
Prediction

Heavyweight
Diagnosis :
Packet-level 

WHY
WHAT

Lightweight 
anomaly detection:
Threshold-based

Expected 
flow values:
Size
Rate
Duration
…

New 
High-Touch 
Flow summary 
Data

Anomalies are detected if the new 
flow values differ significantly from 
the expected

Anomalous
Flows

New 
High-Touch 
Packet-level 
Data
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Future Work:  ml improvements

Model Training:
● Experiment with RNN 

models
● Predict additional 

features
○ Rate
○ Loss

● Other datasets
○ Org to org traffic
○ application-specific

Model Tunning:
● Evaluate retraining 

strategies
○ Fixed time
○ Accuracy threshold

● Online/offline 
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Future work: detection

Heavyweight
Diagnosis :
Packet-level 

Lightweight anomaly 
detection:
Threshold-based

● Self adaptable 
threshold based 
on traffic 
conditions

Inject anomalies in real 
traffic

Anomalous
Flows

New 
High-Touch 
Packet-level 
Data
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Future Work- Detection

Model Training:
● Experiment with RNN 

models
● Predict additional 

features
○ Rate
○ Loss

● Other datasets
○ Org to org traffic
○ application-specific

Model Tunning:
● Evaluate retraining 

strategies
○ Fixed time
○ Accuracy threshold

● Online/offline 
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Conclusion

• Fast and reliable movement of data across facilities is instrumental in modern 
workflows and scientific discovery

• Data transfer performance is a multi-factorial issue
• Data transfers experience anomalies that remain undetected/unmitigated due to lack of 

visibility
• We can use INT data to train AI/ML models that successfully detect anomalies in near 

real-time and enable traffic reengineering
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