

Renata Frez - Senior Network Engineer - RNP/AmLight

Overview

- Introduction to AmLight
- Tools/Frameworks in use at AmLight
- Juniper Telemetry Interface (JTI)
- In-band Network Telemetry (INT)
- How does In-band Network Telemetry (INT) work?
- Identifying Bursts: SNMP x JTI x INT (Tests)
- But... What is within the bursts? Using sFlow
- New: INT Collector 2.0 Detecting Microbursts
- Conclusion / Future Work

Introduction to AmLight

- AmLight Express and Protect (AmLight-ExP) (NSF International Research Network Connections (IRNC) program)
- 600Gbps of upstream capacity between the U.S. and Latin America, and 100Gbps to Africa
- NAPs: Florida(3), Brazil(2), Chile, Puerto Rico, Panama, and South Africa
- Routers: Juniper and RARE/Freerouter
- Switches: Brocade, Dell, Corsa, Noviflow, and P4 Whiteboxes
- Production SDN Infrastructure since 2014:
 - Orchestrators: OESS and Kytos-NG
 - OpenFlow 1.0 and 1.3 as southbound interfaces
- Programmable Data Plane:
 - In production since 2021. Enables INT (In-band Network Telemetry) reporting
- Next step: Autonomic network architecture!
 More information: https://www.youtube.com/watch?v=CRnKKuP9I3Y

Tools/Frameworks in use at AmLight

Tool/Framework	Accuracy depends on:	Challenges:	Used for:
SNMP	Data Plane counters collection interval.SNMP collector polling.	 ➤ Low interval → higher CPU utilization. ➤ High interval → lower accuracy. 	General monitoring.
sFlow	Sampling rate.	 ➤ Low sampling rate → more storage required → higher CPU utilization. ➤ High sampling rate → lower accuracy. 	Troubleshooting unusual events.TOP N reports.
Juniper Telemetry Interface (JTI)	Data sending interval.	 ➤ Low interval → more storage required. ➤ High interval → lower accuracy. 	Environments that require more granular information.
In-band Network Telemetry (INT)	Real time. Complete visibility.	Processing all data collected in real time.	Troubleshooting short- time events.

Juniper Telemetry Interface (JTI)

- As the number of devices and metrics generated by them has grown, the need for a non-impacting CPU tool has become critical.
- > JTI is the Juniper telemetry solution that enables periodic data streaming as Protocol Buffers. In our environment, each device streams data every 2 seconds (lowest value for Packet Forwarding Engine Sensors).
- Examples of telemetry information streamed:
 - Interface counters, Optical counters, Routing information, Line Card information, and many others

In-band Network Telemetry (INT)

- > INT is a P4 application that records network telemetry data in the packet while the packet traverses a path between two points in the network
- > Since telemetry is exported directly from the Data Plane, the Control Plane is not affected:
 - > Translation: you can track/monitor/evaluate EVERY single packet at line rate and in real time.
- Examples of telemetry information added:
 - > Timestamp, ingress port, egress port, queue buffer utilization, sequence #, and many others

How does INT work?

- 1 User sends a TCP or UDP packet unaware of INT
- 2 First switch (INT Source Switch) pushes an INT header + metadata
- 3 Every INT switch pushes its metadata. Non-INT switches just ignore INT content
- 4 Last switch (INT Sink Switch) extracts the telemetry and forwards original packet to destination
- 5 Last switch (INT Sink Switch) forwards the 1:1 telemetry report to the Telemetry Collector

Simulations...

Demo Setup – Tools Comparison

- EXFO Traffic Generator
- Dell (Switch OpenFlow) = SNMP polling every 14s (lowest possible value).
- Juniper (Router) = JTI enabled sending telemetry every 2s (lowest possible value).
- Noviflow (P4 Programmable Switch) = INT enabled for all packets, i.e., real-time. Database stores information every 100ms.
- > All graphs were taken from Grafana.

Identifying Bursts: SNMP x JTI x INT [Test 1]

- Interval: 30s.
- 2 Streams: Continuous and Burst.
- Continuous Traffic: 20G.
- Burst: 10x 30G.
- Burst duration:2.5s.
- Interval between bursts: 2.5s.

Identifying Bursts: SNMP x JTI x INT [Test 2]

- Interval: 30s.
- 2 Streams: Continuous and Burst.
- Continuous Traffic: 20G.
- Burst: 15x 30G.
- Burst duration:200ms.
- Interval between bursts: 1.8s.

Identifying Bursts: SNMP x JTI x INT [Test 3]

- Interval: 30s.
- 2 Streams: Continuous and Burst.
- Continuous Traffic: 20G.
- Burst: 30x 30G.
- Burst duration:50ms.
- Interval between bursts: 0.95s.

Identifying Bursts: SNMP x JTI x INT [Test 3]

- Interval: 30s.
- 2 Streams: Continuous and Burst.
- Continuous Traffic: 20G.
- Burst: 30x 30G.
- Burst duration:50ms.
- Interval between bursts: **0.95s**.

Stream 1	Traffic Generator Results			
	Average	Minimum	Maximum	
Throughput (Gbit/s)	19.8177	19.7942	19.8473	
Jitter (ms)	0.00015	< 0.00001	0.01276	
Latency (ms)	0.03349	0.01748	0.40493	
	Seconds	Count	Rate	
Frame Loss	27	68360	9.1E-03	
Out-of-Sequence	0	0	0.0E00	
Stream 2				
	Average	Minimum	Maximum	
Throughput (Gbit/s)	1.1895	1.1599	1.2128	
Jitter (ms)	0.00113	< 0.00001	0.38676	
Latency (ms)	0.39435	0.01770	0.40517	
	Seconds	Count	Rate	
Frame Loss	27	115983	2.0E-01	
Out-of-Sequence	0	0	0.0E00	

But... What is within the bursts? Using sFlow

Improvements for INT Collector

New: INT Collector 2.0 – Detecting Microbursts

- The AmLight INT Collector 2.0 will support detecting microbursts as short as 10ms.
- The figure shows 10 microbursts, each lasting 20ms, using up to 19Gbps Microbursts.

Start Time (UTC)	Duration (s)	Max BW (Gbps)
2022-10-09T13:10:37.304385768	0.02	16.35
2022-10-09T13:10:37.400937960	0.02	17.44
2022-10-09T13:10:37.499991784	0.02	18.88
2022-10-09T13:10:37.598316288	0.02	19.01
2022-10-09T13:10:37.696891136	0.02	18.97
2022-10-09T13:10:37.795097088	0.02	18.91
2022-10-09T13:10:37.893028608	0.02	19.09
2022-10-09T13:10:37.992322792	0.02	18.66
2022-10-09T13:11:58.794430952	0.06	53.41
2022-10-09T13:12:01.507265768	0.04	41.48
2022-10-09T13:13:21.666561768	0.04	20.83

1 second interval

Conclusion / Future Work

- Monitoring every and any packet is possible with In-band network telemetry!
- > JTI and INT have increased the network visibility beyond our expectations.
- Combining INT and legacy monitoring tools enables AmLight to track any performance issues and user complaints.
- New telemetry solutions will help achieve the Vera Rubin Observatory's Service Level Agreement (SLA).
- More tests are needed using sFlow to monitor interfaces' counters and compare the accuracy to other tools.
- > Combining INT with learning tools will enable AmLight to move towards a closed-loop orchestration SDN network.
 - AmLight towards Autonomic Networking Architecture (ANA):
 - > Self-configuration
 - Self-healing
 - Self-optimizing
 - > Self-protection

Evaluating INT, JTI, and sFlow @ AmLight

Renata Frez - RNP/AmLight <renata@amlight.net>